Table of contents

Introduction

The main task of switching is to ensure nodes connectivity within one network (see. InfiLINK 2x2 and InfiMAN 2x2: Switching). To organize communication between networks, different class of devices (routers) must be used (see Figure 1). This article describes the applications areas and configuration of Infinet devices used as routers.

Terminology

Switching

Let's look at the difference in processing service headers for data transmission by switching and routing using an example (Figure 1).

In the scenario when PC-1 sends data to PC-2 (Figure 1a), PC-1 fills in the service fields following way:

The switch receives a frame from PC-1 and redirects it to PC-2 in accordance with the switching table. Thus, data transmission is performed based on the Ethernet service header, since transmission is at the data link level. This mechanism is called switching.

In the scenario when PC-1 sends data to PC-3 (Figure 1b), PC-1 fills in the frame service fields following way:

The switch receives such a frame and transmits it to the router in accordance with the switching table. The router receives the frame, decapsulates the IP packet and transmits it to LAN-2. In this case, service headers will be set in the following way:

Note that the IP packet header is left unchanged, the receiver and sender MAC addresses in the Ethernet frame header are changed. This operation was performed because MAC addresses are used to transfer data within the same local network, i.e. when transferring data between different local networks, the MAC addresses will always be replaced. This data transfer mechanism is called routing.

Figure 1a - Example of data transmission from PC-1 to PC-2

Figure 1b - Example of data transmission from PC-1 to PC-3

Routing

The main networks function is the ability to organize communication between arbitrary nodes connected to this network. Using for these tasks the packet switching technologies associated with the link layer of network interaction model has a number of disadvantages:

The IP network layer protocol, which is widely used to provide connectivity in large and global networks, lacks these disadvantages. IP is not a replacement for Ethernet, these protocols work together and perform different functions: Ethernet provides data transfer within the communication channel, IP is responsible for global addressing and node communication.

Currently, two versions of the IP protocol have become widespread: IPv4 and IPv6. Since Infinet devices currently support only the IPv4 protocol, further article will contain the description of only this version.

IP protocol

IP address

The IP protocol provides for using 32 bits for addressing nodes in the network, which are usually divided into four octets and written in decimal form, separating octets with dots (Fig. 2). IP addresses examples:

Figure 2 - IP address structure

Network mask

IP provides the grouping of addresses on a network using network masks. A netmask is applied to an IP address, dividing it in two parts: a network ID and a host ID. Devices connected to the same network will have the same network ID and different host IDs. To ensure the network ID is matching on all devices, use the same network mask values when configuring devices. Host IDs set allows inferring the number of devices that can be connected to this network and their IP addresses.

The network mask has 32 bits and is written in the same way as the IP address with one difference: the mask consists of a one bits sequence followed by zero bits, i.e. the set of masks is preset and contains 33 values: from 0 to 32. The finite range of possible values allows to write the network mask in an abbreviated form, in which the number of single bits in the mask is indicated after a slash (see the table below).

One bits in the network mask define the network identifier: the bits of the IP address corresponding to one bit values of the mask must be fixed and cannot be changed. The remaining bits of the IP address, corresponding to the zero bit values of the mask, can take arbitrary values and determine the host ID.

When configuring devices connected to the network, IP addresses are not used without the network mask, since routing rules imply a different approach when transferring data to a device from "own" network and to other devices (see Switching). Note that the network mask is indicated in the device configuration and is not transmitted in the service header of the IP packet.

ExampleParameterDecimal formatBinary formatAbbreviated format


Example 1

IP address10.94.200.700001010.01011110.11001000.00000111-
Network mask255.255.255.011111111.11111111.11111111.00000000/24
Minimal address10.94.200.000001010.01011110.11001000.00000000-
Maximal address10.94.200.25500001010.01011110.11001000.11111111-


Example 2

IP address192.17.0.011000000.00010001.00000000.00000000-
Network mask255.255.255.25211111111.11111111.11111111.11111100/30
Minimal address192.17.0.011000000.00010001.00000000.00000000-
Maximal address192.17.0.311000000.00010001.00000000.00000011-

Table 1 - Network mask examples

Addresses types

The IP address can be divided according to several criteria:

By the application area, addresses can be divided in two large groups: public and private (Figure 3). Global connectivity can only be established between public addresses, i.e. private addressing is used on the enterprise local network, and public addressing is used on the Internet. The public address is unique, private addresses can be reused, i.e. devices PC-2 and PC-6 may have the same address and this is not a problem, since there is no connectivity between LAN-1 and LAN-2. However, addressing within the same local network must be unique, i.e. the addresses of PC-5 and PC-6 must be different.

In addition to public and private addresses, several service ranges are allocated, for example, to transmit multicast traffic, loopback interface traffic, etc.

Figure 3 - An example of various types networks connecting

By belonging in any network, the following addresses can be distinguished:

Place of the router in the network

Figure 3 does not have the elements to connect networks to each other and to transfer data between networks using IP addressing. Such elements are called routers (Figure 4). Usually, a router connects several networks of an arbitrary type, not just public and private, as shown in the example.

The routers have following key features:

Figure 4 - Place of the router in the network

Routing table

Let's look at the network diagram (Figure 5), which includes the following elements:

Figure 5 - Network diagram example

The routing table is an address directory of networks. It contains the location of the networks used for packets transmitting. The routing table may not contain the exact location of a particular network, but there are network interface through which the destination network can be reached. This logic is used by all routers along the traffic path, i.e. if there are 8 routers on the packet path, then each of them has information only about the next router along the way, and this information is contained in the routing table.

The routing table includes the following columns (Table 2a-c):

Table 2a - The R1 routing table example

Table 2b - The R2 routing table example

Table 2c - The R3 routing table example

Route sourceDistance
directly connected networks0
static route1
External BGP20
OSPF110
RIP120
ODR160

Table 3 - Distance values depending on route source

Использование таблицы маршрутизации

На пути следования пакета каждый из маршрутизаторов применяет алгоритм использования таблицы маршрутизации. Этот алгоритм выглядит следующим образом:

Примеры использования таблицы маршрутизации

Рассмотрим примеры использования таблицы маршрутизации в различных сценариях (рис. 6а-в).

Сценарий 1 - подключение ПК1 к FTP-серверу, запущенному на ПК2 (источник - 192.168.1.10, получатель - 192.168.1.20)

Данные передаются в рамках одной сети с использованием технологий коммутации, поэтому маршрутизатор R1 в этом процессе не участвует.

Рисунок 6а - Передача пакета от ПК1 к ПК2


Сценарий 2 - проверка доступности ПК3 со стороны ПК1 (источник - 192.168.1.10, получатель - 172.16.3.2)

Рисунок 6б - Передача пакета от ПК1 к ПК3

Таблица 4а - Пример таблицы маршрутизации маршрутизатора R1

Таблица 4б - Пример таблицы маршрутизации маршрутизатора R2

Таблица 4в - Пример таблицы маршрутизации маршрутизатора R3

Сценарий 3 - переход на сайт "infinet.ru" с ПК1 (источник - 192.168.1.10, получатель - 82.151.200.119)

Рисунок 6в - Передача пакета от ПК1 к серверу infinet.ru


Таблица 4а - Пример таблицы маршрутизации маршрутизатора R1

Таблица 4б - Пример таблицы маршрутизации маршрутизатора R2

Таблица 4в - Пример таблицы маршрутизации маршрутизатора R3

Заполнение таблицы маршрутизации

Говоря о механизмах заполнения таблицы маршрутизации стоит ввести два термина:

Источниками маршрутной информации, формирующих RIB, являются:

Рисунок 7 - Источники маршрутной информации

Таблица маршрутизации в устройствах Инфинет

В зависимости от семейства, устройства Инфинет поддерживают различные источники маршрутной информации:

Источник маршрутной информацииInfiLINK 2x2InfiMAN 2x2InfiLINK XGInfiLINK XG 1000Vector 5Vector 70
Маршруты операционной системы

+

+++++
Непосредственно присоединённые сетитрафик управления++++++
пользовательский трафик++----
Статические маршрутытрафик управления++++++
пользовательский трафик++----


Протоколы динамической маршрутизации

OSPF++----
ODR++----
RIP++----

Таблица 6 - Сравнительная характеристика источников маршрутной информации для устройств Инфинет

Отображение таблицы маршрутизации

Далее, по ходу статьи, мы будем использовать инструменты вывода и анализа маршрутной информации. Эти инструменты зависят от семейства устройств и будут представлены ниже.

Таблица маршрутизации устройств семейств InfiLINK 2x2, InfiMAN 2x2

Устройства семейств InfiLINK 2x2, InfiMAN 2x2 поддерживают настройку маршрутизации как для трафика управления, так и для пользовательского трафика, причём поддерживаются статические маршруты и протоколы динамической маршрутизации.

Вывод маршрутной информации осуществляется двумя способами:

Unknown node#1> netstat -r
Routing tables
Destination        Gateway            Flags     Refs     Use  Interface
10.10.10.0/24      link#6             UC          0        0  svi1
10.10.10.101       00:0c:29:40:72:d0  UHL         0        1  svi1
10.10.10.254       link#6             UHL         0        0  svi1
10.10.20.0/24      link#2             UC          0        0  eth0
10.10.20.101       00:0c:29:40:72:d0  UHL         1     1307  eth0
127.0.0.1          127.0.0.1          UH          1        0  lo0
224.0.0.0/8        127.0.0.1          UGS         0        0  lo0

Рисунок 8а - Пример просмотра маршрутной информации на устройствах семейств InfiLINK 2x2, InfiMAN 2x2

Таблица маршрутизации устройств семейств InfiLINK XG, InfiLINK XG 1000

Устройства семейств InfiLINK XG, InfiLINK XG 1000 поддерживают только настройку маршрутизации для трафика управления. Можно указать шлюз по умолчанию и добавить статические маршруты. Вывод таблицы маршрутизации осуществляется двумя способами:


#1> netstat -r
Routing tables
Destination        Gateway            Flags     Refs     Use  Interface
10.10.10.0/24      link#2             UC          0        0  mgmt
10.10.10.101       00:0c:29:40:72:d0  UHL         1      512  mgmt
10.10.10.254       link#2             UHL         1        0  mgmt
10.10.20.0/24      10.10.10.254       UGS         0        0  mgmt
127.0.0.1          127.0.0.1          UH          0        0  lo0
224.0.0.0/8        127.0.0.1          UGS         0        0  lo0

Рисунок 8б - Пример просмотра маршрутной информации на устройствах семейств InfiLINK XG, InfiLINK XG 1000

Таблица маршрутизации устройств семейств Vector 5, Vector 70

Устройства семейств Vector 5, Vector 70 поддерживают только настройку маршрутизации для трафика управления, позволяя указать шлюз по умолчанию. Вывод таблицы маршрутизации осуществляется двумя способами:

#1> netstat -r
Routing tables
Destination        Gateway            Flags     Refs     Use  Interface
10.10.10.0/24      link#2             UC          0        0  eth0
10.10.10.101       00:0c:29:40:72:d0  UHL         5     3222  eth0
127.0.0.1          127.0.0.1          UH          0        0  lo0
224.0.0.0/8        127.0.0.1          UGS         0        0  lo0

Рисунок 8в - Пример просмотра маршрутной информации на устройствах семейства Vector 5, Vector 70

Продолжение статьи доступно по ссылке: Статическая маршрутизация.

Дополнительные материалы

Онлайн-курсы

  1. Предварительная настройка и установка устройств семейств InfiLINK 2x2 и InfiMAN 2x2
  2. Коммутация в устройствах семейств InfiLINK 2x2 и InfiMAN 2x2.
  3. Устройства семейства InfiLINK XG
  4. Vector 5: установка и настройка

Вебинары

  1. Типовые сценарии настройки маршрутизации в устройствах Инфинет. Часть 1.
  2. Типовые сценарии настройки маршрутизации в устройствах Инфинет, часть 2.

Прочее

  1. InfiNet Wireless R5000 - Веб-интерфейс - Руководство пользователя
  2. InfiLINK XG / InfiLINK XG 1000 - Руководство пользователя
  3. Семейство Vector 5 - Руководство пользователя
  4. Команда netstat